Search results for "Friction coefficient"
showing 6 items of 6 documents
A technical note on an experimental device to measure friction coefficient in sheet metal forming
2006
Abstract In the paper the authors present the results of several experimental tests aimed to determine the Coulomb friction coefficient in sheet metal forming operations at the varying of the sheet metal material and for different operative conditions. In particular a few pressure and lubricating conditions have been investigated. In order to develop such experiments a dedicated fixture was designed and set-up starting from the one proposed by Wilson.
Online Estimation of the Mechanical Parameters of an Induction Machine Using Speed Loop characteristics and Recursive Least Square Technique
2022
This paper presents a novel approach for estimation of mechanical parameters, inertia and friction coefficient of an Induction Machine (IM) using speed loop characteristics and Recursive Least Square (RLS) estimator. Using the 5th order dynamic equation for Induction Machine and the forgetting factor based RLS algorithm the technique herein proposed employs the speed of the machine and the torque as the inputs for the estimator. Results obtained compares the estimated parameters with the actual parameters under multiple step varying and exponentially varying scenarios. Upon analyzing the results, the validity and the effectiveness of the proposed identification technique is confirmed
An experimental study for the characterization of fluid dynamics and heat transport within the spacer-filled channels of membrane distillation modules
2018
Abstract The thermo-fluid dynamic behavior of spacer-filled channels for membrane distillation was investigated experimentally. Several different geometry were investigated thanks to customized reference spacers manufactured using a 3D printer. In particular, two sets of experiments were conducted: in the first set, cylindrical filaments were orthogonally arranged and the flow attack angle was made to vary from 0o to 90o; in the second set, the flow attack angle was kept symmetrical and the filament angle was made to vary from 30° to 150°. Each spacer was tested for Reynolds numbers between 200 and 900 in the hot channel, while maintaining a constant temperature difference of 13 °C between …
Inverse Analysis Used to Determine Plastic Flow and Tribological Characteristics for Deep-drawing Sheet
2014
Abstract The present paper aims to develop a simple method based on inverse analysis that allows us to determine the laws of plastic flow coefficients and the friction coefficient between the material and punch. Selecting from different types of tests, we have chosen the Hecker test, because this test requires a single form of punch, the hemispherical one. In this test, the friction between the punch and the blank-sheet is caused by the blank-sheet strains and not by the movement it makes (as in deep drawing case). Besides the friction coefficient, other parameters like hardening and strength coefficients (n and k), influence the distribution of stresses and strains in the material. Using t…
Physics of agarose fluid gels: Rheological properties and microstructure
2021
Agarose, a strongly gelling polysaccharide, is a common ingredient used to optimize the viscoelastic properties of a multitude of food products. Through aggregation of double helices via hydrogen bonds while cooling under quiescent conditions it forms firm and brittle gels. However, this behavior can be altered by manipulating the processing conditions viz shear. For example, gelation under shear leads to microgel particles with large surface area, which in turn leads to completely different rheological properties and texture. Such fluid gels are shown to play an important role in texture modification of foods and beverages for dysphagia patients. In this study, different concentration of a…
Tribological and Mechanical Properties of the Nanostructured Superlattice Coatings with Respect to Surface Texture
2022
This research is funded by the Latvian Council of Science, project “Carbon-rich self-healing multifunctional nanostructured smart coatings (NSC) for high-tech applications using high-power confined plasma technology for their deposition”, project No. 2019/1-0385.